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Abstract

Over the past 2 decades, there have been revolutionary developments in life science technologies characterized by high throughput, high efficiency, and
rapid computation. Nutritionists now have the advanced methodologies for the analysis of DNA, RNA, protein, low-molecular-weight metabolites, as well as
access to bioinformatics databases. Statistics, which can be defined as the process of making scientific inferences from data that contain variability, has
historically played an integral role in advancing nutritional sciences. Currently, in the era of systems biology, statistics has become an increasingly important
tool to quantitatively analyze information about biological macromolecules. This article describes general terms used in statistical analysis of large, complex
experimental data. These terms include experimental design, power analysis, sample size calculation, and experimental errors (Type I and II errors) for
nutritional studies at population, tissue, cellular, and molecular levels. In addition, we highlighted various sources of experimental variations in studies
involving microarray gene expression, real-time polymerase chain reaction, proteomics, and other bioinformatics technologies. Moreover, we provided
guidelines for nutritionists and other biomedical scientists to plan and conduct studies and to analyze the complex data. Appropriate statistical analyses are
expected to make an important contribution to solving major nutrition-associated problems in humans and animals (including obesity, diabetes, cardiovascular

disease, cancer, ageing, and intrauterine growth retardation).
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Nutrition plays a vital role in health, genetic predisposition, and
disease [1-3]. Effective prevention and treatment of metabolic
disorders require adequate knowledge about the molecular mechan-
isms responsible for the actions of nutrients and other dietary
components on cell metabolism and function [4-7]. Traditional
research in molecular nutrition involves the analysis of expression
of one or a very few genes at one time. While this approach has led to
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important findings on the discoveries of key regulatory pathways for
nutrient utilization, it generally requires prior knowledge of genes of
interest. There is increasing evidence that most genes do not function
in isolation and that dietary nutrients interact to modulate expression
of a set of genes and their biological functions [5]. Thus, nutritionists
face a challenging task of defining cellular and molecular mechanisms
that control the digestion, absorption and metabolism of dietary
nutrients. With the recent completion of sequencing of the genomes
of many species, including the human [8,9], mouse [10,11], rat [12]
and yeast [13], we now have useful tools to identify complex
interactions between genes and the diet as an environmental factor.

Statistical analysis, which is defined as the process of making
scientific inferences from data that contain variability, has historically
played an integral role in advancing nutritional sciences. This tool has
gained an increasingly important role in the systems biology era to
analyze large, complex data sets generated from genomics, proteo-
mics and metabolomics studies [14-17]. Particularly, analyses of data
from the reverse transcriptase-polymerase chain reaction (RT-PCR) as
well as microarray, proteomics and other bioinformatics studies
requires statistical models to account for various sources of variations
[18,19]. Appropriate statistical methods can minimize systemic
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errors, optimize data analysis, and identify which genes are
differentially expressed in the face of substantial biological and
technical variations [18-20].

The major objective of this article is to provide guidelines for
nutritionists and other biomedical scientists to adequately plan and
conduct experiments and to analyze complex data particularly from
microarray, RT-PCR, proteomics and other bioinformatics studies.

2. Definitions of general statistical terms
2.1. Hypothesis testing and errors

2.1.1. Null hypothesis and alternative hypothesis

Assume that study subjects in treatment and control groups are
drawn randomly from their own populations that follow probability
distributions characterized by defined parameters. For example, the
parameters may be two normal distributions for body mass index
(BMI) with different means and variances, or two Poisson distribu-
tions of the number of people having heart attacks. If the study aim
is to determine whether dietary supplementation with a nutrient
(e.g., L-arginine) will reduce BMI in obese subjects, the hypothesis is
to test if the mean BMI of the population receiving the treatment
differs from that of the population not receiving the treatment. The
null hypothesis (Hp) is that the two populations have equal mean
BMI, while the alternative hypothesis (H,) is that they have unequal
mean BMI.

2.1.2. Type I and type Il errors

In hypothesis testing, two types of errors may be made when
experimental data are analyzed statistically. Type I error (false
positive) occurs when a conclusion is drawn in favor of a significant
difference while there is no true difference between populations;
namely, H, is claimed to be true while Hy is true. Type II error (false
negative) occurs when the null hypothesis is not rejected while the
alternative hypothesis is true; namely, Hy is claimed to be true while
H, is true. Power of a test is the probability of claiming the alternative
hypothesis is true when it is true. Type I error is usually controlled at a
very low probability level (e.g., 5% or 1%), which is usually called the
significance level of hypothesis testing. The power of a test is the
complement probability of type II error and is usually expected to be
80% but may vary from study to study.

2.2. Sample size

A large sample size yields a powerful test to detect a difference
between populations. Therefore, sample size calculation is needed to
ensure desirable power in hypothesis testing. For this purpose, a
difference in the parameters of distributions between study popula-
tions needs to be specified, such as a difference of 10 mmHg for mean
systolic blood pressure or 5 kg/cm? for mean BMI. Based on a desired
parameter of biological or clinical significance, a sample size can be
calculated on the basis of probability distribution of the measured
values with a given significance level (e.g., 5%) and the power of test
(e.g., 80%).

2.3. Data collection

Data collection depends on study design. A cross-sectional study
may require a survey to collect data with response variables that
may reflect the study outcome. A case-control study first identifies
subjects (i.e., cases and controls, where controls may or may not
match the cases with clinical variables) and then examines the
exposure of individual subjects to the risk factors of interest. A
randomized controlled trial recruits subjects first and then
randomly assigns them to a treatment or control group. A

longitudinal study assigns subjects randomly to control and
treatment groups, monitors the subjects over time, and collects
multiple observations. The data collected from case-control studies
may be subjected to large recollection measurement errors and
large bias. This is because nutrient intakes of subjects are usually
not based on food consumption records but rely on their memory,
which can result in large measurement errors and a severe bias
toward study aims. Additionally, the recollection of past food
consumption by study subjects may be influenced by their
knowledge of possible outcomes.

To achieve high accuracy in data collection and ensure high quality
of findings, samples may be repeatedly collected from the same
subject. These repeated samples may improve the study. However,
two kinds of mistakes are often made by investigators. First, repeated
samples are treated as independent samples and the correlation
between them is ignored in data analysis. This approach may
mistakenly yield false positives due to an inflated sample size.
Second, repeated measurements from the same samples are averaged
out and the averaged values are used for statistical analysis, resulting
in false negatives due to the loss of power.

2.4. Statistical modeling and data analysis

Depending on study design and the type of response variables,
data will be analyzed with use of different statistical models to
reflect the data structure and potential correlation between
observations. Categorical response variables are usually analyzed
using contingency tables, logistic regressions, or generalized
estimation equations (GEE) models. The contingency tables can
also be used to test the homogeneity of distributions for categorical
response or explanatory variables. In contrast, continuous response
variables are analyzed using the t test, analysis of variance (ANOVA),
correlation, and regression.

Statistical modeling is the data processing step to sort out
information from a study. This can be achieved by building a
quantitative relationship between the outcome or response variables
and the explanatory or independent variables through a mathemat-
ical model or equation that characterizes the dependence of the
former on the latter. In modeling response variables, their correla-
tions should receive special attention, because the responses (e.g.,
body weights of the same subject at different time points) are highly
correlated and thus the correlation structure should be incorporated
into data analysis. Therefore, longitudinal studies should be carefully
analyzed for the following reasons: First, subjects are monitored with
multiple observations at different time points. Second, the correlation
structure between observations affects estimation accuracy and
subsequent inference.

Interpretation of statistical analysis results is crucial for making
inference and valid conclusion. Particularly, P values have played an
irreplaceable role in biomedical research. Recent advances in high-
throughput technologies have made it possible to simultaneously
analyze thousands of genes and identify those that are potentially
responsible for the observed differences in the outcome or phenotype
of study subjects. This raises a multiple comparison issue in
hypothesis testing of multiple genes and thus leads to different
criteria for the claim of statistical significance through correction for
multiple comparison, such as family-wise error rate (FWER) or false
discovery rate (FDR) [21].

2.5. Special concerns over genetic or “omic” data

Genetic or “omic” data are those obtained from genetic, genomic
or proteomic studies, such as gene expression data, DNA genetic
polymorphism data or protein profiles. Current technologies for
conducting genetic and “omic” studies provide measurements of the
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intensities of genes or proteins, which represent levels of gene or
protein expression. Because of the relatively large noise in microarray
data, significant findings usually need to be confirmed experimentally
through quantitative RT-PCR (qRT-PCR), which itself also is subjected
to variability of other sources. Recent research has led to the study of
copy numbers that is more intrinsic to molecular activities and less
relies on technologies.

Through high-throughput technologies, a large amount of mole-
cules with known actions (e.g., proteins at the binding site for DNA
transcription) can be monitored so that their functions can be studied
through measurement of their intensities that may be associated with
phenotypes of interest. This approach may provide clues for further
study design for causal relationship between risk factors and
outcomes. Exceedingly large amounts of data can be obtained from
the genetic or “omic” studies, such as thousands or tens of thousands
of genes or proteins, as well as millions of single nucleotide
polymorphisms (SNP) in genome-wide association studies, which
are distinct from the traditional biological or clinical studies. These
huge databases provide biologists with opportunities to conduct fine-
tune studies with great details of genes or proteins, but also present
challenges to quantitative scientists (e.g., statisticians and bioinfor-
maticians) to correctly decipher the data and make meaningful
conclusions. In terms of statistical modeling and analysis, the “omic”
data are characterized as high dimensional (thousands) or highly
correlated (genes cooperate to fulfil biological functions). However,
such studies often involve a small sample size, giving rise to the so-
called small n — large p problem.

3. Sample size and power calculation
3.1. General considerations

Sample size determination is a major issue in planning quantita-
tive research. Accurate estimation of sample size will not only ensure
the planned study to achieve a sufficient power to detect significant
differences, but also save time and money by recruiting no more
subjects than needed. Many factors affect sample size calculation,
including Type I error rate, the power of test and the expected
significance of detection. Sample size calculation for studies not
involving microarray or other high-throughput technologies can be
found in many biostatistics books [22,23]. In this section, we
summarize methods for sample size determination for microarray
and other studies involving high-throughput technologies.

In microarray studies, experiments involving 20 000 to 30 000
genes or features are conducted at the same time and variability in
their expression differs. Thus, a traditional power analysis would
result in 20 000 to 30 000 different sample sizes. Genes that have
similar, but not the same expression in 2 groups, would require very
large sample sizes to detect a minor difference, while genes with
dramatic differences can be detected with very small sample sizes.
Three per group is usually the minimum sample size for a publication
and is reasonable for cell cultures, inbred animals and littermates
with small between-subject variability. Human or other studies,
where variability is larger, can benefit from at least five to ten subjects
per group. Obviously, a larger sample size is always better, but the
question is how large is sufficient.

Because the aims of microarray studies include identification of
differentially expressed genes between cases and controls, as well
as profiling of subjects based on gene expression levels, the main
objective of microarray studies is to discriminate cases from
controls. Two major classes of statistical models have been studied
so far. One class of models focuses on gene expression, including
the ANOVA method [24] and the ¢ test-like method, such as
significance analysis of microarrays [25]. The other class of models
concerns the subject label (case versus control, or receiving study

treatment versus standard treatment or control), including logistic
regression model, or classification models, such as the Bayesian
hierarchical model [26]. Accurate estimation of sample size ensures
enough power to: (a) identify differentially expressed genes
(DEGs) in the first class of models and (b) allow the selection of
genes that will be able to discriminate cases from controls in the
second class of models.

Many methods have been proposed to determine sample size
when pilot data are available [e.g., 27-35]. In general, two broad
approaches (model-based and the direct control of error rate) have
been employed. The model-based approach relies rigorously on the
models for microarray data analysis, such as the ANOVA model, which
may provide accurate estimation of sample size if the proposed model
fits the data properly. This approach is similar to the classical
approach to sample size determination based on conventional
statistical parametric models with specific assumption on distribu-
tions of response variables and experimental risk factors, but differs in
the special characteristics of the high-throughput data that require
error rate adjustment through either FWER or FDR for multiple
comparisons. However, it is often difficult to identify a single model
that fits experimental data well. In such cases, the direct control of
error rate approach is more appropriate and yields accurate
estimation. Several authors also provided free software to calculate
sample size [32,35]. In addition, free software and public databases of
microarray data are also available to support sample size determina-
tion for the investigators who have no pilot data for sample size
calculation [34]. Such an approach does not require a specific class of
model, but rather focuses on the distribution of the P values of single
gene expression analysis. This tool makes sample size determination
user-friendly and easily accessible.

3.2. The ANOVA model-based approach

This approach rigorously depends on a statistical model for data
analysis (i.e., the ANOVA model) where individual gene expression or
its transformation (usually a log transformation to ensure the
normality of intensity data) is assumed to be normally distributed
and analyzed using the ANOVA model. Popular models are one-way
or two-way ANOVA, incorporating experimental design factors. See
Kerr and Churchill [36] for the global ANOVA model and Wolfinger et
al. [37] for a generalization with random effects. Among sample size
determination methods, Lee and Whitmore [27] described detailed
modeling and calculation based on the classical approach to sample
size determination for linear models with adjustments for multiple
comparisons through controlling type I error rate, FWER and FDR.
They then considered detailed sample size for several standard
microarray study designs, including matched-pair data, completely
randomized design, and isolated effect design. A sample size table was
also provided for each design. This method can be assisted with a
software package sizepower in R (see Ref. [35] for details). Similarly,
Dobbin and Simon [33] derived sample size calculation based on a
model similar to ANOVA taking into consideration more technical
details of microarray technology, such as single-label, due-label or
dye-swamp microarrays.

Keep in mind that microarray experiments typically have very
small sample sizes due to their relatively high costs. Thus, it is
essential to keep variability as small as possible, particularly in the
one-way or two-way ANOVA analysis. As an example, gene
expression is quantified in the liver and heart of mice receiving
dietary supplementation with L-arginine or L-alanine (isonitrogenous
control). There are two factors (tissue and amino acid), each at two
levels. A 2x2 ANOVA with five chips per group would use 20 mice,
randomly assigned to each of the four treatment combinations. An
alternative design would use 10 mice, randomly assigned to L-
arginine or control; RNA from liver and heart of each mouse would be
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extracted for mRNA measurements. The second design, in which liver
and heart are obtained from the same mouse, will have far less
variability than the first design and, therefore, will have much more
power to detect true differences in gene expression.

3.3. The direct control of error rate approach

When there is no a priori knowledge of an appropriate model for
statistical analysis of experimental data, the required sample size may
be calculated based on the direct control of error rate. Muller et al.
[28] provided detailed theoretical study on sample size determination
of microarray studies based on FDR and false-negative rate, whereas
Tsai et al. [29] calculated sample size based on the expected number
of false positives using individual comparison-wise error rate. Based
on the FDR-control, Jung [31] derived the sample size for a specific
number of true rejections while controlling the FDR at a prespecified
level and provided an exact formula based on a t-distribution
assumption. Alternatively, Pounds and Cheng [32] proposed an
anticipated FDR method for sample size determination, controlling
the FDR, positive FDR, and conditional FDR. Their method can be
easily implemented with R codes available on the web at http://
www.stjuderesearch.org/depts/biostats/documents/fdr-library.R.
Finally, sample size can be estimated using t statistic, FDR, large fold
change and other methods [30].

Of note, The PowerAtlas [34] is a power analysis and sample size
calculation software package that provides not only sample size
calculation, but also needed pilot study data based on publicly
available data from previous microarray studies. This sample size
calculation method is based on studies of the distribution of P values
from single gene expression analysis in microarray studies controlling
for expected discovery rate. It allows the use of either investigator's
own data or publicly available microarray databases already incor-
porated into the software for sample size calculation. The free
software is available on the web site http://www.poweratlas.org/.

Sample size calculation is a critical step in designing microarray
studies. Accurate estimation of sample size will not only allow
optimal design but also ensure a desirable power to detect
significant findings. Because microarray studies present challenges
in many different aspects, various methods for sample size
calculation make it difficult for investigators to choose an appropri-
ate one. We suggest selection of a method based on study design. If
the statistical model for data analysis is known from a pilot study, a
more specific method for sample size calculation can be chosen that
would best fit data analysis. Otherwise, the FDR-based approach
may be used. Additionally, it is possible to take the advantage of the
PowerAtlas software to borrow the strength from publicly available
microarray study databases.

After microarray data are collected and analyzed, investigators
may find it useful to conduct a power analysis if significant findings
are not detected for target genes yet there is tendency toward
significance. In such a situation, the power of a test can be calculated
on the basis of the data and statistical model, as discussed above. The
other approach is to determine if enough subjects have been recruited
for the study [38]. This approach assumes that the subjects are
independently recruited in a serial procedure. The classification
model will be updated each time when a subject is recruited and will
also be tested on a newly recruited subject. It provides a stopping rule
with a pre-specified probability to ensure that, at stopping, the
probability of misclassifying the next subject will be less than a pre-
determined threshold. A bootstrap approach may be taken for the
collected samples so that the needed sample size can be calculated for
a stopping time based on the target threshold. Random sampling can
also be employed to explore how many more samples will be needed
to achieve the pre-determined misclassification level if stopping is not
achieved based on experimental data.

4. Statistical analysis of microarray data
4.1. Platform selection

The first decision in a microarray experiment is to pick a platform.
The two basic options are one color or two. One color means that only
one sample of RNA goes on a chip. With two colors, two RNA samples
go on each chip. While more economical, two color chips are often
custom-made and require extensive effort in establishing quality
control and statistical analysis methods. One color chips are
professionally produced and the reliability of chips has already been
established. The most common one color (or oligonucleotide) arrays
are from Affymetrix or I[llumina [39] and will be the focus of our
discussion. Most of what is described here applies to two color and
oligonucleotide arrays. The flow chart of statistical analysis of
microarray data is illustrated in Fig. 1.

4.2. The use of replicates and pooling in microarray analysis

The use of replicates in microarray experiments is under constant
debate. Technical replicates are using the same mRNA sample on
multiple chips. They are useful for establishing the reliability of the
platform, but they cannot be used to increase the sample size for
statistical calculations. Biological replicates are where different mRNA
samples go on each chip, and thus, they contribute to the overall
statistical sample size for the experiment. In general, for profession-
ally produced microarray chips, technical replicates are not useful and
the reliability of the platform has already been well established.

Arelated issue is the use of pooling, which means putting more than
one mRNA sample on each microarray chip. This reduces individual
variability, and thus increases power, but at the price of not being able to
use individual covariates in the statistical model. In the 2x2 ANOVA
example discussed previously, it is possible that the weight of the
mouse might impact gene expression. If pooling were used, weight
could not be used as a covariate in the model. When pooling is adopted,
itis essential to extract RNA from every sample and then combine equal
amounts of RNA from each sample to go on each chip [40].

4.3. Normalization of gene microarray chips

Once the RNA has been appropriately extracted, hybridized to
chips and scanned, it is time to normalize the chips so that data
between chips can be “fairly” compared. Although plenty of options
are available for chip normalization, the most common are MAS 5
from Affymetrix and gcRMA from Bioconductor (www.bioconductor.
org). MAS 5 is the easiest to use and will be the focus of this
discussion. gcRMA will typically yield similar results with the
exception of the situation where gene expression is very low. In
such a case, gcRMA is likely better than MAS 5.

Using MAS 5 results in an output file for each chip that contains the
probe set ID, the probe set expression, the presence/absence call, and
the presence/absence P value. The presence/absence P value is used to
declare each probe set either “P” for present (P<.05), “A” for absent
(P>.065), or “M” for marginal (0.05 < P<.065). The P value cutoffs for
each label are adjustable. Technically, the assumptions of independence
in the statistical test are not satisfied, but the P/A call is still useful as
discussed below. MAS 5 can also generate an output called a “change P-
value” for each probe set on a pair of chips. Change P values are
statistically wrong and misleading and should never be used in practice.

4.4. Data reduction in microarray analysis
The next step in the statistical analysis is data reduction. If there are

probe sets that are not of interest, statistical calculations should not be
done on those probe sets. On most, if not all, Affymetrix chips, the first
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Fig. 1. A flow chart for microarray experiment and data analysis. A microarray experiment involves platform selection, sample size calculation, adequate design, data collection
and processing, and normalization of gene chips. Statistical significance in levels of differentially expressed genes among treatment groups is commonly determined by a combination
of P-value and the false discovery rate. Results of microarray studies are normally verified by quantitative real-time RT-PCR analysis.

approximately fifty probe sets are quality control probe sets used by the
MAS 5 software. Typically, there is no need to do statistics on these
probe sets. Similarly, many researchers are not interested in Expressed
Sequence Tags which are genes that have not been annotated. These
should also be removed from the data set if they are not of interest. The
final group of probe sets that are typically removed are probe sets that
are labeled as absent (A) on all the chips in the experiment. If the P/A
call determines that the probe set is not expressed on any chip in the
experiment, there is no reason to do statistical analysis on that probe
set. If fairly large numbers of chips are involved in the experiment (e.g.,
a total of 20 or more), the condition of all absent calls on all chips could
be relaxed to allow a few marginal or even “present” calls and would
still result in being removed prior to statistical analysis. At this stage,
researchers should also identify any subsets of the probe sets that are of
particular interest (e.g., a particular pathway or annotation feature).
These subgroups can be statistically analyzed separately and together
with the rest of the probe sets.

4.5. Log transformation of microarray data

The final step prior to statistical analysis of the microarray data is
to decide whether or not to take the log transformation of the data.

For most microarray data sets, the probe sets with larger expression
levels benefit from a log transformation, but the smaller expression
levels should not be logged. Most researchers choose to log their data,
but many do not. Typically for one color microarrays, there is not
much difference in gene lists with or without logging the data.

4.6. Methods of statistical analysis of microarray experiments

The statistical analysis of microarray data is typically done row by
row using the analysis appropriate for the experimental design. The
most common designs are two sample t tests, one- and two-way
ANOVA. Almost always, it is assumed that experimental errors are
normally distributed. Obviously, this assumption is not true for all
probe sets, but the small sample sizes for most microarray data sets
make the normality assumption a good choice. The most common
error at this point is likely failure to treat dependencies between the
chips properly. If RNA is taken from the same subject more than once,
a statistical model for repeated measures is needed.

The end result of the statistical analysis will be one or more P
values for each probe set. The overall P value for each row tests
whether there are any statistical differences between the rows. A
histogram of these P values provides useful information. If the
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histogram appears to be uniformly distributed (like a rectangle),
there may be little if any differences between the treatment groups.
On the other hand, a histogram with a large peak for low P values
indicates that large differences exist between the treatment groups.
Histograms with a low or moderate peak for small P values indicate
that more chips would likely result in smaller P values for probe sets
that are actually differentially expressed.

The next decision is how to determine the list of probe sets that
have changed. Traditionally, a P value less than .05 rejects the null
hypothesis of no change. In a microarray experiment involving 10,000
tests, using a P value cutoff of .05 could mean as many as
0.05x10 000=500 false positives. The FDR of Benjamini and
Hochberg [21] chooses the cutoff by a user-specified expected
proportion of false positives. Ten or twenty percent are common
choices. For experimental conditions which cause differential expres-
sion but no large changes, the FDR method may not find any genes
that change. As an alternative to using P=.05 or the FDR method,
many researchers simply use P=.01 as the cutoff.

Once the overall P values are used to identify DEGs, many
researchers attempt to use cluster analysis to determine genes that
are responding similarly to the experimental conditions. To avoid
excess noise in the gene clusters, be sure to cluster only genes that are
determined by statistical methods to be differentially expressed.
Many different types of cluster analysis are possible, and they often
yield results that are hard to interpret. Statistical pattern matching
(e.g., Liuetal. [41]) is an alternative that can be used to divide that list
into sublists of genes that change similarly. For example, if two
sample t-tests are used to generate the overall P values, the list should
be sorted into up-regulated and down-regulated genes. The biological
interpretation of the resulting list(s) is made by first annotating the
gene lists using the manufacturer's Web site. There may be obvious
biological conclusions that can be drawn at this point. A more
statistical approach is to provide the list of all genes (e.g., the entire
chip) to a statistical software package that determines gene ontology
categories that are overrepresented on the smaller list compared to
the larger list.

5. Statistical analysis of qRT-PCR data
5.1. General considerations

Due to large variability in gene intensity data inherent in the
microarray technology, they are subjected to wild noise. Thus,
significant findings should be confirmed by a more reliable method.
Potential sources of the wild noise in the microarray analysis of gene
expression include fluorescent scanning, uneven spray of reagents
within arrays, control of environmental factors, and varying exper-
imental conditions for different arrays. These factors lead to large
variability and possibly contribute to artifacts. Such problems may not
be resolved by the within- and between-array normalization in data
preprocessing. The huge number of genes or probes in microarray
studies, usually around tens of thousands, may also result in the
identification of a large number of false positives. To verify the results
of microarray studies, qRT-PCR experiments are often carried out on
the DEGs identified by the microarray analysis.

5.2. Threshold cycle in qRT-PCR analysis

qRT-PCR quantifies the amplification of genes and records the real
time (a threshold cycle of each gene to achieve a pre-set intensity
level). This threshold will be used to calculate the mRNA levels of
genes in a biological sample and to compare the values between cases
(treatments) and controls in terms of fold or percent change. For this
purpose, a reference gene (endogenous) is usually pre-specified to be
amplified together with selected genes. To confirm microarray

findings, tissues selected from cases and controls will be used for
gRT-PCR analysis. Usually, the number of subjects in treatment and
control groups is smaller than the corresponding microarray study.
Because qRT-PCR experiments generate threshold cycle values for
each of the selected genes, data analysis need to be conducted with a
proper statistical model. Although mathematical models for PCR
experiments have been proposed in the literature, statistical
modeling has not received much attention [18].

5.3. Mathematical models for RT-PCR analysis

DNA sequences are amplified in RT-PCR through DNA polymerase.
During the exponential amplification phase of RT-PCR, a copy of target
gene doubles in one cycle, and then quadruples in the next cycle.
Therefore, the amplification is in the power of 2 (exponential
amplification), and can be described by an equation Y,=Y, 2" with
Y, being the initial expression level of a target gene, and Y,, being the
expression level after n cycles. Because the amplification is subjected
to variation in experimental conditions and may not be 100% efficient
and the amplification process may not end with an exact number of
cycles, the above equation can be written generally as Y;=Y, (1+e),
where t is the duration of the amplification process in continuous
number of cycles and e is the amplification efficiency, which may
depend on many experimental conditions and sequence properties.
The amplification efficiency of RT-PCR assays usually ranges between
0 (completely inefficient) and 1 (fully efficient). Thus, it is important
to have an endogenous gene to serve as an internal reference to
ensure the validity of RT-PCR results. The above equation applies
generally to both target genes and the reference gene in cases and
controls. Also, the target genes may have different amplification
efficiency from the reference gene. Because the samples from both
cases and controls are processed simultaneously in one RT-PCR
experiment along with the reference gene, the efficiency for samples
from cases and controls can be assumed identical [20].

5.4. Statistical models for RT-PCR analysis

So far, only two statistical methods have been proposed: (1) the
GEE model — a generalization of the ANOVA model incorporating the
correlation between samples within subject [20], and (2) an ANOVA/
analysis of covariance (ANCOVA) model that treats within-subject
samples using a random effect model [42]. These two models are
based on the same mathematical principle as stated above and
recognize the within-subject correlation in the modeling. In addition,
both papers provide readers with user-friendly SAS program codes
[20,42]. However, they employ two different methods to perform data
analysis. The GEE model was proposed originally to deal with
response variables, either continuous or categorical, to conduct
analysis in longitudinal studies with multiple observations from
each subject. This model is suitable for qRT-PCR data with repeated
samples from each subject and is used by biologists to emphasize the
importance of accurate measurements. The ANOVA/ANCOVA model
with a random effect is also a good approach to this special type of
qRT-PCR data.

However, the SAS program for the ANOVA or ANCOVA model has
two major flaws. First, the SAS program does not recognize the
correlation between the target gene and the reference gene from the
same subject. Because estimating the fold change of each gene
between the initial quantity of the cDNA and the final value at the
termination of PCR amplification is the goal of the qRT-PCR analysis,
the initial quantities of genes from the same sample are highly
correlated. Thus, statistical methods that fail to address this
correlation will surely lose its power in the detection of significance.
Second, the SAS program assumes constant variance for target genes
and the reference gene in a biological sample and, therefore, does not
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recognize heteroscendasticity, i.e. different variance of expression for
different genes. Because expression of genes is known to vary greatly,
their variance is not likely to be similar [43]. A statistical model that
fails to address this heteroscendasticity issue will surely result in
incorrect inference. Therefore, current methods using the ANOVA/
ANCOVA model needs to be revised to prevent misleading results. In
the GEE model, these two issues can be resolved simply by taking the
difference in expression between each target gene and the reference
gene [20]. This is the recommended approach in biostatistics to deal
with paired observations and resolve the varying variance issue. In
addition, the GEE model will yield correlation coefficients between
within-subject repeated samples, and the corresponding SAS program
is easy to implement [20].

6. Statistical analysis of proteomics data
6.1. General considerations

In many respects, proteomics lags far behind microarray experi-
ments due to several challenges in the collection of mass spectroscopy
data. Among these challenges are that (1) identification of peptides is
a central feature/difficulty of the analysis (as opposed to microarrays
where each gene occupies a “dot” on the array); (2) the quantitation
information for peptides requires careful manipulation of possibly
overlapping peptide peaks; and (3) missing data is much more of a
problem (e.g. in many cases peptides are not identified in an
experiment even when they are present) than in microarray
experiments. See the recent review by Bantscheff et al. [44] on the
experimental side of proteomics studies, including differences in
equipment and mechanisms for preparing biological samples.

6.2. Mass spectrometry data

Central to all mass spectroscopy experiments is the preparation of
a sample containing a large amount of peptides. This sample is then
placed in a tandem mass spectrometry (MS)/MS machine. lons from
the sample then pass through the machine until they reach a detector.
At prespecified regular intervals, this first layer of the MS calculates a
mass spectrum (measurements of ion abundance on a mass to charge,
or m/z, scale) for the ions arriving at that time. This mass spectrum
will contain peaks corresponding to the m/z values of abundant
peptides in the original sample. After each scan is performed by the
first MS layer, the machine selects an m/z region and allows the ions
in this region to pass through to the second layer of the tandem MS/
MS equipment. These ions are then further broken down and move
through the machine to a second detector, which computes a mass
spectrum as well. Typically, the region of m/z values chosen for “pass
through” is one of the largest peaks in the MS scan, but most
equipment will also allow the experimenter to program specific rules
for this operation. This selection process is important because always
choosing high abundance peaks will fail to identify low abundance,
but important, peptides in the original sample [45]. Thus, the main
data structure of a tandem MS/MS run is alternating scans, beginning
with ion concentrations from the original sample in one scan (MS)
and then the ion concentrations from the tandem MS/MS scan.
The m/z value is selected to pass ions through to the tandem MS/MS
layer. This second layer (the tandem MS/MS scans) is used to identify
peptides, while the first layer (the MS scans) is used for quantitation.

6.3. Identification of peptides

The data from the second tandem MS/MS scan is chosen for
identification of peptides. Peptide identification is based on the
principle that the breakdown mechanism for each possible peptide is
known (e.g., trypsin predominantly cleaves peptide chains at the

carboxyl side of lysine and arginine, except when either is followed by
proline). Therefore, the original mass and the masses of the broken
down component result in a “signature” allowing for reconstructing
and identifying the original peptide in the first layer (MS) scan. Doing
this from scratch without a database of peptide, simply from known
masses of amino acids, is called de novo sequencing [46]. Available
software for this task includes PEAKS [47], PepNovo [48], AUDENS
[49] and NovoHMM [50]. All of these algorithms rely on some
heuristic search techniques to search through a set of possible amino
acid sequences to reconstruct the original peptide.

More commonly, a peptide is identified through the search of a
database of known peptides [51]. Each peptide in the database,
combined with the chemical method for protein hydrolysis, results in
a “signature” set of peaks in the tandem MS/MS scan. The observed
spectrum is compared to each possible peptide in the database and a
score is assigned based on the agreement between the observed
spectrum and the expected spectrum. If a peptide in the database
receives a sufficiently high score, the observed peak is considered to
be identified as that peptide from the database. Most software for this
purpose reports not only the tentatively identified peptide but a
numerical “confidence score” reflecting the uncertainty in that
identification. The earliest method, and still a standard, is SEQUEST
[52]. SEQUEST works by taking each peptide in the database and
determining its expected spectrum (using knowledge of B, A and Y
ions). Then, the correlation between the observed spectrum and the
expected spectrum is observed. In addition, the correlations between
the expected spectrum and shifted versions of the observed spectrum
are taken (e.g., all the peaks in the observed spectrum are moved to
the left or right in the graph and the correlations recalculated). If the
correlation is exceptionally high for the observed spectrum, but
moderately low for the shifted spectrum, this indicates that the
observed spectrum is aligned well with the expected spectrum
because high correlations are expected when the peaks are in the
same locations. This calculation is feasible for the number of peptides
in a typical database (fortunately processing power has been
increasing while the size of the databases has also been increasing).
If SEQUEST finds one particular peptide in the database aligns well, it
can be concluded that the observed spectrum came from that peptide.

Unfortunately, as databases grow large, it is possible that multiple
peptides produce reasonably high correlations. Note that noise in
spectra often peaks in the expected spectrum and may not be
represented in the observed spectrum, therefore reducing the
accuracy of SEQUEST. If so, one may be interested in relative fit, not
absolute fit. In other words, a peptide is identified only if the match to
the model spectrum is significantly better than others in the database.
The program X!Tandem [53] attempts to do this quickly. X! Tandem
works by only summing the peaks in the tandem MS/MS spectra
which match the model spectra (thus no shifting, which is
computationally costly). A scaled version of this quantity is called
the Hyperscore. The hyperscores are then calculated for each peptide
in the database. Histograms of these hyperscores follow a distribution
that would be expected from random matching. This is reasonable
considering most peptides in the database should NOT be a match for
the observed spectrum. X! Tandem then assigns an “E-value” that
indicates how good the observed match is compared to what would
be expected by chance matching. If the E-value is sufficiently low
(namely, we would almost never expect this good a match by
chance), then the protein is declared to be identified. This calculation
is quite similar to a statistical P-value. A similar, competing idea to X!
Tandem is MASCOT [51]. See Brosch et al. [54] for a comparison of the
two. It is possible to combine results from several of these algorithms
for even better identification. The MASCOT method has been
successfully used in nutritional proteomics research [55,56].

Peptide Prophet provides a method for converting scores (from
any identification method) into a probabilistic identification (e.g.,
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Peptide Prophet reports a probability that the peptide is correctly
identified) [57]. Peptide Prophet begins by producing a discriminant
score for each spectrum in the sample. These discriminant scores
fortunately fall into two groups — a correctly identified group and an
incorrectly identified group. These groups slightly overlap, so
Peptide Prophet uses the expectation-maximization (EM) algorithm
to fit a mixture distribution and then assigns a probability to each
identification [58]. If the discriminant score is firmly within the
“identified” group and nonidentified group, the probability values
are near 1 and 0, respectively. For discriminant scores in the middle
where the overlap occurs, probabilities of identification are
anywhere between 0 and 1. Note the user may then choose which
peptides to pursue. Only selecting peptides with high identification
probabilities results in being surer of the results, but some correctly
identified peptides may be missed. Utilizing lower probability scores
may be more useful in an exploratory setting to identify peptides of
interest. Note that posttranslational modifications of peptides, such
as glycosylation or phosphorylation [59], can cause difficulties with
these methods. The reason is that these post-translational modifica-
tions can alter the chemical structure of the protein and thus change
the pattern of its degradation products. This can lead to misiden-
tification of peptides because the peptide is not hydrolyzed
according to the “expected signature.”

6.4. Isotope-labeled quantification

Quantification experiments in proteomics attempt to determine
differences between protein expression across treatment groups (e.g.,
Alzheimer's versus normal patients). These experiments typically take
the form of “shotgun proteomics,” where a sample containing a large
number of peptides is analyzed with the hope of identifying several
differentially expressed proteins for further study. In an isotope labeled
experiment, two groups of samples are treated with different isotopes,
one heavy and one light. There are a variety of abbreviated heavy
methods (ICAT, SILAC, iTRAQ, see Bantscheff et al. [44]). The samples
are then mixed together and treated as a single sample for the
remainder of the mass spectroscopy run. Statistically, this is important
because any variation that can be attributed to handling after the
samples are mixed occur equally to all treatment groups. This is in
contrast to “label-free” methods, which combine results of multiple
mass spectroscopy runs and thus may have differences attributed to
experimental variation not present in the labeled experiment.

Quantification is performed through the first set of MS runs. For
identified peptides, we have not only an m/z region (the region allowed
to pass through for the identification to take place), but also the time
when this occurred. The “first MS” scans for those times in a
neighborhood around the time of the “identifying” scan will then be
collected, as indicated in Fig. 2. The x-axis of the figure contains the scan
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number, while the y-axis provides the observed intensities for the light
isotope (red) and the heavy isotope (blue). The dark red part of the bars
indicates overlapping red and blue portions. To acquire these observed
intensities, the MS scan where the peptide was identified should be
examined. The m/z value that was passed through to the second,
tandem MS scan shows us where to look in the MS scans for that
peptide. Moreover, we also have to look for m/z values representing the
“shift” in mass due to isotope labeling. This is expected to succeed
because each isotope should have the same chemical properties and,
therefore, the labeling results in different masses between the same
peptide across the treatment groups. Furthermore, if the peptide is
known, the expected difference in mass between the light and heavy
isotope can be determined. Thus, in addition to assessing the expression
for the identified peptide, we also look in the mass area where the
“companion” peptide from the alternative treatment group is expected
to be located. Similarly, for the original peptide, we also acquire a peak
and compute the area within that peak to determine the expression of
the companion peptide. The ratio of these expressions is then used to
quantify the relative expression of the peptide across the treatment
groups. Fundamental to this process is the fact that the ion concentra-
tions are measured with noise, and peptides which have relatively low
expression (relative to the background variation) are particularly
difficult to quantify.

A straightforward but somewhat thorny issue is simply to
determine how long before and after the identified peak to add
together (Fig. 2). For example, we have to determine how far out to
“color” the bars red or blue for inclusion into the calculation. At the
center of a good peak, the expression is far above the baseline noise;
however, at the extremes the peak begins to slide back into the
baseline noise. If a very small window is chosen, fewer values are
summed, yielding higher variation in the resulting expression
estimates (namely, a smaller sample of points is used). On the other
hand, if a very broad window is selected, pure noise is added up into
the expression level, resulting in poor estimates of protein expression.

One common method for calculating expression ratios is XPRESS
[60], which performs this task using a low pass Butterworth filter and
simply taking a sum of the smoothed values. Another is ASAPRatio
[61], which combines a Savitzky-Golay filter with a normal (Gauss-
ian) fit of the peak to determine expression. Finally, in RelEx, a
Savitzky-Golay filter is applied for 100 scans before and after the
identified peak [62]. Then, a linear regression is performed (Fig. 3) on
the expressions at each scan. Namely, a data point in the linear
regression is the expression for the heavy isotope at that scan plotted
against the expression for the light isotope. Ideally (if the expression
has similar shapes), these points should form a line, whose slope is
the expression ratio. In practice, the points are measured with errors,
and thus, the points fall in a linear trend, but not exactly on a line.
RelEx is convenient in that the quality of the regression provides a
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Fig. 2. Isotope-labeled quantification in proteomics analysis. The x-axis contains the scan number while the y-axis contains the observed intensities for the light isotope (red) and the
heavy isotope (blue). Dark red areas indicate overlapping bars. The estimated protein expression ratio is simply the sum of the red bars divided by the sum of the blue bars.
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Fig. 3. Idealized version of RelEx. The bottom panes of the figure show the observed light (red) and heavy (blue) ion intensities. The intensities used are colored. The points in the main
pane are the light and heavy intensities observed for each scan plotted against each other. The slope of the regression line (determined without an intercept) estimates the expression
ratio while the correlation of the points (how well the peaks align) is a measure of confidence in the estimated expression ratio. The full implementation of RelEx adds various

smoothers and other enhancements.

quick measure of the confidence in the expression ratio. If the
regression diagnostics (e.g., R?) are not satisfactory this may indicate
a poorly identified peptide or other problem.

In these algorithms, expression ratios for peptides, not proteins,
are quantified. If a researcher has confidence in a certain list of
peptides from a particular protein, protein expression ratios may be
obtained by combining the estimated expression ratios for each
component peptide. Typically this is done on the log scale as
estimates of the log expression ratio are more stable than estimates
of the expression ratios themselves, particularly when one of the
isotopes is minimally expressed in the denominator of the ratio.
Averaging ratios on the log scale is equivalent to taking the
geometric mean of the ratios themselves. As averages are normally
distributed, a standard error for the protein ratio can be computed.
Unfortunately, for various experimental reasons, a researcher also
runs into the problem that a peptide is identified for one of the
treatment groups but no corresponding peak may be found for the
other group. This can occur for reasons other than non-expression in
the other group (i.e., it cannot be simply assumed that the peptide
was not expressed in the other group). Thus, missing peptides will
limit the ability to perform quantification.

6.5. Label-free quantitation

Isotope labeling is a difficult process which is not possible in many
areas of clinical investigation, particularly human proteomics. Thus, an
active area of research is in “label-free” methods. In a labeled
experiment, one mass spectroscopy run is completed with both the
heavy and light isotopes together in the input. In a label-free
experiment, multiple MS runs are performed. For example, in an

experiment attempting to determine protein expression differences
between Alzheimer's patients from normal controls, two samples
would be prepared; one from the Alzheimer's patients and another
from the controls, and each would have a separate MS run.
Experimentally, this immediately creates the difficulty that any
variation from run to run will now also be included in the estimate of
the protein expression ratio, something controlled for in isotope labeled
experiments. Among these difficulties is that the peaks are contained in
different scans during the experiment. Specifically, the scan numbers
containing a particular peptide in one MS run may not be sufficiently
close to the scan numbers containing the peptide in another MS run.

Thus, the central statistical difficulty in the analysis of label-free
methods is finding corresponding peaks in multiple MS runs.
Specifically, one must be able to identify something along the lines
of “the peak at such and such m/z value in scan x of the first MS run
corresponds to the same peptide as the peak at such and such m/z
value in scan Y of the second MS run.” One popular method for
handling this problem is PEPPeR (Platform for Experimental Proteo-
mic Pattern Recognition, [45]), a method which heavily utilizes
normal mixture models [63] and bootstrapping [64] to identify
common peaks which are then used for quantitation. Another
possibility is ProtQuant [65], which utilizes the XCorr scores from
the SEQUEST identification for quantitation. Label-free quantitation
methods is one of the more active research areas, with multiple
software packages being developed rapidly

6.6. Software platforms

A wide variety of software is available for the analysis of proteomic
data. Some of this software is open source and freely downloadable,
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while other software is propriety. We will focus on the open source
software. A fundamental problem in proteomics is the reasonable
large amount of data generated in a single experiment (many MS and
tandem MS scans, each containing ion frequencies at many m/z
values, result in large arrays of data). Thus, data storage formats are an
initial problem. There are currently several standard formats available
[66]. See Droit et al. [66] who discuss variants based on extensible
markup language (XML) including mzXML, PepXML, and ProtXML.
These data formats are used in a variety of software packages, and
thus provide a convenient means for analyzing results with different
software packages in addition to a standard format for posting
datasets to the internet.

A popular pipeline for the analysis of proteomic database is the
Trans-Proteomic Pipeline, freely available from the Seattle Proteome
Center (http://tools.proteomecenter.org/software.php). This soft-
ware includes a large number of tools for data handling (including
the conversion of data from a variety of formats), identification of
peptides and proteins (PeptideProphet) and quantification tools such
as XPRESS and ASAPRatio. A key advantage of any complete open
source pipeline is that it may be amended by users, and thus, new
analysis methods may be easily compared to older methods [66,67].

One crucial issue where proteomics could be improved is a fuller
understanding of the error processes underlying proteomics data.
This is a particularly thorny problem due to the detailed interactions
present in the chemistry. However, such an understanding is
fundamental to proper statistical procedures. Many papers in the
literature are light on descriptions of the statistical methods used (in
terms of the exact numerical procedure and their error properties) in
favor of experimental comparisons. This is compounded by several
pieces of software only being available in closed source, propriety
forms. Thus, it is essentially impossible to determine exactly how the
data is being processed.

A “mundane” statistical procedure like linear regression is not
used for analysis of proteomics data because it has performed well
only in a few experimental datasets. However, it can be shown that,
given certain assumptions (e.g., normally distributed independent
errors), linear regression is the optimal way of estimating para-
meters. These assumptions can then be verified through the use of
residual plots.

7. Statistical analysis of other bioinformatics data
7.1. Linkage studies

In addition to microarray and proteomics analysis, bioinformatics
research include: (1) linkage studies through analysis of family
pedigree, (2) genetic association studies through analysis of SNP
genotype, (3) transcription regulatory region studies, (4) copy
number variation studies and (5) genome-wide association studies
[68]. Linkage studies have been developed extensively for research on
genetically inheritable diseases. The requirement of long-term data
collection through multiple generations makes it difficult to imple-
ment, especially with late onset diseases (e.g., Alzheimer disease).
Thus, linkage studies are less attractive and less powerful compared
with case-control studies of unrelated individuals. On the other hand,
genetic association studies among independent cases and controls
offer promise to enhance the detection of the association between
specific genes or gene sets and diseases or phenotypes, where the
presence of specific allele of genes may alter risks for diseases.
Furthermore, human genetic variation studies aid in deciphering the
genetics of complex diseases (e.g., hypertension and diabetes)
through genome-wide association studies [68] and copy number
variation studies [69,70]. Recent developments of copy number
estimation methods and SNP genotyping techniques through high
density SNP array technologies (e.g., Affymetrix 5.0 and 6.0 SNP

arrays [71]) further expedite genome-wide association and copy
number variation studies, therefore making it possible to conduct
large scale research with millions of SNPs and tens of thousands of
subjects [68].

Genetic association studies focus on the identification of: (1)
genes or specific alleles of genes; and (2) gene-gene interactions or
haplotypes (combination of specific alleles of different genes on the
same copy of chromosome) that are highly associated with the
disease or phenotype or their interaction with environmental risk
factors. The case-control study is the most popular design for genetic
association investigations, where a logistic regression model is often
employed. While a single gene association model may be straight-
forward, gene-gene and gene-environment interactions may pose
greater challenges and also lead to more significant findings. For
example, haplotypes may present special gene-gene interactions but
are not observable with double heterozygous SNPs because of an
ambiguous phase that needs a special treatment with the statistical
EM algorithm for missing data [72-74].

Genetic association studies are based on the genotyping of SNPs,
where each SNP generally has two alleles, either the same
(homozygous SNP of “AA” or “BB” type) or different (heterozygous
SNP of “AB” type) that vary with individuals. Genetic association
studies and the most recently developed genome-wide association
studies are based on genotype data of a large number of SNPs
annotated with high density SNP microarrays, such as Affymetrix
100K SNP arrays, 500K SNP arrays (or 5.0 arrays) and 6.0 SNP arrays.
Hence, it is crucial to accurately annotate each SNP from the
microarray probe intensity data. So far, a few genotype calling
methods have been developed on the basis of Affymetrix high density
SNP arrays. In contrast to the single array-based genotype calling
methods including the whole genome sample assay and dynamic
modeling, the machine learning-based methods (including the RLMM
[75], BRLMM [71], CRLMM |[76], MAMS [77] and a single array
approach GEL [78]) have improved genotyping accuracy. Such
techniques usually require multi-array training with the gold-
standard annotation of SNP genotype of the HapMap samples. A
novel approach based on a robust model of DNA copy numbers
requires only one array, which further improves genotyping with
high accuracy consistently for different prototypes of arrays and
resolves the missing data problem in genotype data [79]. These
methods provide a broad spectrum in SNP annotation for genetic
association studies, particularly for genome-wide association studies.

7.2. Estimation of DNA copy numbers

DNA copy number variation has been reported to play a critical
role in cancer research [80]. Nutritional studies have also been
conducted to provide important clues to the development of cancers,
including breast cancer, colon cancer, and prostate cancer [81,82].
Several methods have been proposed to estimate DNA copy numbers,
including a high-resolution method [83], the CNAG method [84], the
CARAT method [85] and the PICR method [79]. Of note, the PICR
method provides accurate estimation of copy numbers at each SNP
site and thus provides high resolution of copy number detection. This
allows for both detection of copy number alteration and SNP
genotype calling with high resolution at high accuracy consistently
for cross-laboratory studies, even cross-array prototypes.

7.3. Genome-wide association studies

Large scale genome-wide association studies have become
increasingly popular in recent years to obtain significant findings
for many diseases or phenotypes at an unprecedented speed. Multiple
diseases or phenotypes are often studied together. Furthermore,
millions of SNPs are annotated to discover major associations
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between diseases and genetic risk factors, including gene-gene and
gene-environment interactions. The quality of data from such big
projects is of great importance because it will lay a solid foundation
for powerful detection of associations and accurate assessment of
scientific findings. Because a major goal of nutritional studies is to
define how the expression of genes is regulated through dietary
intervention [1-3], identifying transcription regulator regions (e.g.,
binding sites) or transcription factors (e.g., promoters and enhancers)
plays a major role in advancing the field. Although a variety of
methods have been developed in this research area, many of them
(e.g., hidden Markov models) have technical limitations and may not
be suitable for data from different cell types or animal species. Most
recently, a new word-counting method has been shown to be robust
for studies of different eukaryotes [86]. Because this approach has few
technical limitation, it is applicable to a wide arrange of biological
studies [86].

8. Conclusion and perspectives

Statistical analysis is a necessary means to test hypotheses in
nutritional and other biomedical research. In the post-genome era,
there is increasing interest in quantifying the effects of nutrients on
simultaneous expression of thousands of genes and proteins in cells
or tissues [87-99]. This has offered new exciting opportunities for
nutritionists but also presented technical challenges in experimental
designs and valid statistical methods for data analysis. Sample size
calculation is a critical step in designing microarray and other high
throughput studies. Accurate estimation of sample size will not only
allow optimal design and budgeting of the planned research but also
ensure the desired power to detect significant findings. It is crucial
that complex data obtained from microarray, RT-PCR, proteomics and
other bioinformatics studies are subjected to appropriate statistical
analysis. In microarray analysis, statistical significance in levels of
DEGs among treatment groups is commonly determined by a
combination of P value and FDR. Likewise, GEE models that properly
reflect the structure of data is often employed in statistical models for
assessing fold change of gene expression in qRT-PCR experiments.
Moreover, a number of software platforms (e.g., MASCOT, Peptide
Prophet, Sequence and X!Tandem) are available for identification of
proteins in biological samples. Levels of protein expression can be
determined using isotope-labeled and isotope-free quantification
methods. Finally, bioinformatics tools have been developed for SNP
genotyping, genetic linkage or genetic association studies in nutrition
research. We anticipate that this article will provide useful guidelines
for nutritionists and other biomedical scientists to plan and conduct
sound studies at molecular, cellular, tissue and whole-body levels and
to employ appropriate statistical methods for analysis of experimen-
tal data in the era of systems biology.
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